(本小题满分13分)已知函数.(Ⅰ)当时,求函数的极值;(Ⅱ)时,讨论的单调性;(Ⅲ)若对任意的恒有成立,求实数的取值范围.
(本小题满分13分)已知函数,其中. (1)当时,求的单调区间; (2)当时,证明:存在实数,使得对于任意的实数,都有成立.
(本小题满分14 分)如图1,在边长为4的菱形中,,于点,将沿折起到的位置,使,如图 2. (1)求证:平面; (2)求二面角的余弦值; (3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.
(本小题满分13 分)某厂商调查甲、乙两种不同型号电视机在10 个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”. (1)当时,记甲型号电视机的“星级卖场”数量为,乙型号电视机的“星级卖场”数量为,比较,的大小关系; (2)在这10 个卖场中,随机选取2 个卖场,记为其中甲型号电视机的“星级卖场”的个数,求的分布列和数学期望; (3)若,记乙型号电视机销售量的方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论)
(本小题满分13分)在锐角中,角,,所对的边分别为,,,已知,,. (1)求角的大小; (2)求的面积.
一束光线通过点射到轴上,被反射到圆上. (1)求通过圆心的反射光线所在直线方程; (2)求在轴上入射点的活动范围.