(几何证明选讲) 如图所示,已知PA与⊙O相切,A为切点,PBC为割线,,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC. (1)求证:ÐP=ÐEDF; (2)求证:CE·EB=EF·EP; (3)若CE : BE="3" : 2,DE=6,EF= 4,求PA的长.
(本小题6分)已知直线l在两坐标轴上的截距相等,且点到直线的距离为,求直线的方程.
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为。 (1)求椭圆C的方程; (2)设直线L与椭圆C交于A、B两点,坐标原点O到L的距离的,求△AOB面积的最大值。
已知正方体中,E,F分别是,CD的中点 (1)证明: (2)证明:平面AED⊥ (3)设,求三棱锥的体积。
已知过点A(0,1)且斜率为的直线与圆C:相交于M、N两点。 (1)求实数的取值范围 (2)求证:为定值 (3)若O为坐标原点,且,求K值。
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点。 求证:(1)直线EF∥面ACD; (2)平面EFC⊥面BCD。