(几何证明选讲) 如图所示,已知PA与⊙O相切,A为切点,PBC为割线,,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC. (1)求证:ÐP=ÐEDF; (2)求证:CE·EB=EF·EP; (3)若CE : BE="3" : 2,DE=6,EF= 4,求PA的长.
(本小题满分10分)已知函数,且当时,的最小值为2,(1)求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
(本小题满分12分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式
(本小题满分12分)设函数().(1)当时,讨论函数的单调性;(2)若对任意及任意,,恒有成立,求实数的取值范围.
(本小题满分12分)已知函数. (Ⅰ)函数在处的切线方程为,求a、b的值; (Ⅱ)当时,若曲线上存在三条斜率为k的切线,求实数k的取值范围.
(本小题满分12分)已知函数.(1)若为函数的极值点,求实数的值;(2)若时,方程有实数根,求实数的取值范围.