(本小题满分13分)已知椭圆()的右焦点是抛物线的焦点,过点垂直于轴的直线被椭圆所截得的线段长度为.(1)求椭圆的方程;(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点.请问:在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
已知数列{an}的前n项和为Sn,3Sn=an-1(n∈N). (1)求a1,a2; (2)求证:数列{an}是等比数列; (3)求an和Sn.
等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列. (1)求{an}的公比q; (2)若a1-a3=3,求Sn.
等差数列{an}中,a7=4,a19=2a9. (1)求{an}的通项公式; (2)设bn=,求数列{bn}的前n项和Sn.
已知数列{an}中,a1=8,a4=2,且满足an+2+an=2an+1. (1)求数列{an}的通项公式; (2)设Sn是数列{|an|}的前n项和,求Sn.
已知数列{an}为等差数列,若<-1,且它们的前n项和Sn有最大值,求使得Sn<0的n的最小值.