(本小题满分12分)如图,是正方形,平面.(1)求证:平面;(2)若,,点在线段上,且,求证:平面.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点. (1)求曲线的轨迹方程; (2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.
设数列{an}的前n项和为Sn,且,n=1,2,3 (1)求a1,a2; (2)求Sn与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列; (3)求S1•S2•S3 S2011•S2012的值.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,,平面底面,为中点,M是棱PC上的点,. (1)若点M是棱PC的中点,求证:平面; (2)求证:平面底面; (3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率; (2)求乙获胜且比赛局数多于5局的概率; (3)求比赛局数的分布列.
在中,角、、所对的边分别为,. (1)求角的大小; (2)若,求函数的最小正周期和单调递增区间.