(本小题满分14分)为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O及等腰直角三角形EFH,其中。为裁剪出面积尽可能大的梯形铁片ABCD(不计损耗),将点A,B放在弧EF上,点C、D放在斜边上,且,设.(1)求梯形铁片ABCD的面积关于的函数关系式;(2)试确定的值,使得梯形铁片ABCD的面积最大,并求出最大值.
(本小题满分14分)已知数列中,,且 (1)设,求数列的通项公式; (1)若中,,且成等比数列,求的值及的前项和.
(本小题满分14分)如图5,正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求二面角的余弦值; (3)在线段上是否存在一点,使?如果存在,求出的值;如果不存在,请说明理由。
(本小题满分12分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,. (Ⅰ)求直方图中的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿, 请估计学校600名新生中有多少名学生可以申请住宿; (Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间 少于20分钟的人数记为,求的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)
(本小题满分12分)已知函数()的部分图像, 是这部分图象与轴的交点(按图所示),函数图象上的点满足:. (Ⅰ)求函数的周期; (Ⅱ)若的横坐标为1,试求函数的解析式,并求的值.
在1,2,3…,9,这9个自然数中,任取3个数. (Ⅰ)求这3个数中,恰有一个是偶数的概率; (Ⅱ)记X为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时X的值是2)。求随机变量X的分布列及其数学期望EX.