(本小题满分14分)为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O及等腰直角三角形EFH,其中。为裁剪出面积尽可能大的梯形铁片ABCD(不计损耗),将点A,B放在弧EF上,点C、D放在斜边上,且,设.(1)求梯形铁片ABCD的面积关于的函数关系式;(2)试确定的值,使得梯形铁片ABCD的面积最大,并求出最大值.
已知函数. (1)判断函数的奇偶性; (2)若关于的方程有两解,求实数的取值范围; (3)若,记,试求函数在区间上的最大值.
(本小题满分16分) 已知函数,若为定义在R上的奇函数,则(1)求实数的值;(2)求函数的值域;(3)求证:在R上为增函数;(4)若m为实数,解关于的不等式:
(本小题满分16分) 已知函数(1)求函数的定义域; (2)若函数在[2,6]上递增,并且最小值为,求实数的值。
(本小题满分16分) 有甲、乙两种商品,经销这两种商品所获的利润依次为(万元)和(万元),它们与投入的资金(万元)的关系,据经验估计为:, 今有3万元资金投入经销甲、乙两种商品,为了获得最大利润,应对甲、乙两种商品分别投入多少资金?总共获得的最大利润是多少万元?
(本小题满分14分) 若,求满足的的值。