(本小题满分14分)为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O及等腰直角三角形EFH,其中。为裁剪出面积尽可能大的梯形铁片ABCD(不计损耗),将点A,B放在弧EF上,点C、D放在斜边上,且,设.(1)求梯形铁片ABCD的面积关于的函数关系式;(2)试确定的值,使得梯形铁片ABCD的面积最大,并求出最大值.
已知函数(). (Ⅰ)若函数在定义域内单调递增,求实数的取值范围; (Ⅱ)设,,()是图象上的任意两点,若,使得,求证: .
(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.(1)求椭圆的方程;(2)求的取值范围.
(本小题满分12分)2015年3月15日,中央电视台揭露部分汽车4S店维修黑幕,国家工商总局针对汽车制造行业中的垄断行为加大了调查力度,对汽车零部件加工的相关企业开出了巨额罚单.某品牌汽车制造商为了压缩成本,计划对、、三种汽车零部件进行招标采购,某著名汽车零部件加工厂参入了该次竞标,已知种零部件中标后即可签合同,而、两种汽车零部件具有很强的关联性,所以公司规定两者都中标才能签合同,否则都不签合同,而三种零部件是否中标互不影响.已知该汽车零部件加工厂中标种零部件的概率为,只中标种零部件的概率为,、两种零部件签订合同的概率为.(Ⅰ)求该汽车零部件加工厂种汽车零部件中标的概率;(Ⅱ)设该汽车零部件加工厂签订合同的汽车零部件种数为,求的分布列与期望.
已知四棱锥的底面是平行四边形,分别是的中点,,,.(Ⅰ)求证:;(Ⅱ)若,求二面角的余弦值.
已知函数的部分图象如图所示,是图象的最高点,为图象与轴的交点,为坐标原点,若(1)求函数的解析式,(2)将函数的图象向右平移2个单位后得到函数的图象,当时,求函数的值域.