(本小题满分14分)在三棱锥P-SBC中,A,D分别为边SB,SC的中点平面PSB平面ABCD,平面PAD平面ABCD(1)求证:PA⊥BC;(2)若平面PAD平面PBC=,求证:
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1; (2)求证:平面CAA1C1⊥平面CB1D1.
设集合,. (1)若,求; (2)若,求实数的取值范围.
已知圆. (1)若圆的切线在轴和轴上的截距相等,且截距不为零,求此切线的方程; (2)从圆外一点向该圆引一条切线,切点为,为坐标原点,且有,求使的长取得最小值的点的坐标.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量. (注:总收益=总成本+利润) (1)将利润表示为月产量的函数; (2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
已知x0,x0+是函数f(x)=cos2-sin2ωx(ω>0)的两个相邻的零点. (1)求f的值; (2)若对∀x∈,都有|f(x)-m|≤1,求实数m的取值范围.