(选修4-2:矩阵与变换) 若点在矩阵对应变换的作用下得到点,求矩阵的逆矩阵.
已知函数 (1)若的图象在点处的切线方程为,求在区间上的最大值; (2)当时,若在区间上不单调,求的取值范围.
已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到 直线的距离为3。 (1)求椭圆的方程; (2)设直线与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的 取值范围.
已知(m为常数,m>0且m≠1). 设(n∈)是首项为m2,公比为m的等比数列. (1)求证:数列是等差数列; (2)若,且数列的前n项和为Sn,当m=2时,求Sn;
如图,在三棱锥中,平面,,为 侧棱上一点,它的正(主)视图和侧(左)视图如图所示. (1)证明:平面; (2)求三棱锥的体积;
某班级共有60名学生,先用抽签法从中抽取部分学生调查他们的学习情况,若每位学生被抽到的概率为. (1)求从中抽取的学生数; (2)若抽查结果如下,先确定x,再完成频率分布直方图;
(3)估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表).