(本小题满分10分) 四棱锥P-ABCD中,底面ABCD是正方形, 边长为,PD=,PD⊥平面ABCD (1)求证: AC⊥PB ; (2)求二面角A-PB-D的大小; (3)求四棱锥外接球的半径. (4)在这个四棱锥中放入一个球,求球的最大半径;
如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面. (Ⅰ)求证:平面平面; (Ⅱ)求四棱锥的体积.
(本小题满分15分)已知△ABC中的三个内角A,B,C所对的边分别为,且满足 (Ⅰ)求;(Ⅱ)求△ABC的面积.
(原创)已知{}是公比为q(q≠1)的等比数列,且存在m∈使得成等差数列. (1)求q的值; (2)若=1,数列{}前n项和为,求.
(本小题满分13分)已知椭圆的两个焦点的坐标分别为,,并且经过点(,),M、N为椭圆上关于轴对称的不同两点. (1)求椭圆的标准方程; (2)若,试求点的坐标; (3)若为轴上两点,且,试判断直线的交点是否在椭圆上,并证明你的结论.
【改编题】(本大题满分13分)设函数,其中为自然对数的底数. (Ⅰ) 时,求曲线在点处的切线方程; (Ⅱ)函数是的导函数,求函数在区间上的最小值. (Ⅲ)函数在区间内有零点,证明:.