(本小题满分14分) 已知椭圆G的离心率为,其短轴的两个端点分别为A(0,1),B(0,-1).(Ⅰ)求椭圆G的方程;(Ⅱ)若是椭圆上关于轴对称的两个不同点,直线与轴分别交于点.判断以为直径的圆是否过点,并说明理由.
设矩阵A=,矩阵A属于特征值λ1=﹣1的一个特征向量为α1=,属于特征值λ2=4的一个特征向量为α2=,求ad﹣bc的值.
若兔子和狐狸的生态模型为(n≥1),对初始群,讨论第n年种群数量αn及当n越来越大时,种群数量αn的变化趋势.
已知二阶矩阵M有特征值λ=8及对应的一个特征向量=,并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值,及对应的一个特征向量的坐标之间的关系.(3)求直线l:x﹣y+1=0在矩阵M的作用下的直线l′的方程.
已知矩阵,若矩阵A属于特征值6的一个特征向量为,属于特征值1的一个特征向量为,求矩阵A.
选修4﹣2:矩阵与变换已知二阶矩阵M有特征值λ=3及对应的一个特征向量,并且M对应的变换将点(﹣1,2)变换成(9,15),求矩阵M.