先化简,再求值:(每题4分,共12分)(1),其中(2),其中(3)已知,求的值。
解方程组:.
矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.(1)求AD的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A、B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使?若存在,求出P点坐标;若不存在,请说明理由.
如图,AB是⊙O的直径,AB=6,过点O作OH⊥AB交圆于点H,点C是弧AH上异于A、B的动点,过点C作CD⊥OA,CE⊥OH,垂足分别为D、E,过点C的直线交OA的延长线于点G,且∠GCD=∠CED.(1)求证:GC是⊙O的切线;(2)求DE的长;(3)过点C作CF⊥DE于点F,若∠CED=30°,求CF的长.
某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?
如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)