如图,“五一”期间在丹尼斯商厦上从点A到点B悬挂了一条宣传条幅,小明和小雯的家正好住在丹尼斯对面的家属楼上.小明在四楼D点测得条幅端点A的仰角为30o,测得条幅端点B的俯角为45o;小雯在三楼C点测得条幅端点A的仰角为45o,测得条幅端点B的俯角为30o.若设楼层高度CD为3米,请你根据小明和小雯测得的数据求出条幅AB的长.(结果精确到个位,参考数据=1.732)
(本题14分)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A点在B点左侧),与y轴交于C点,顶点为D.过点C、D的直线与x轴交于E点,以OE为直径画⊙O1,交直线CD于P、E两点.(1)求E点的坐标;(2)联结PO1、PA.求证:~;(3) ①以点O2 (0,m)为圆心画⊙O2,使得⊙O2与⊙O1相切,当⊙O2经过点C时,求实数m的值;②在①的情形下,试在坐标轴上找一点O3,以O3为圆心画⊙O3,使得⊙O3与⊙O1、⊙O2同时相切.直接写出满足条件的点O3的坐标(不需写出计算过程).
(本题12分)如图,AD//BC,点E、F在BC上,∠1=∠2,AF⊥DE,垂足为点O.(1)求证:四边形AEFD是菱形;(2)若BE=EF=FC,求∠BAD+∠ADC的度数;(3)若BE=EF=FC,设AB = m,CD = n,求四边形ABCD的面积.
(本题12分)如图,在平面直角坐标系中,等腰梯形OABC,CB//OA,且点A在x轴正半轴上.已知C(2,4),BC= 4.(1)求过O、C、B三点的抛物线解析式,并写出顶点坐标和对称轴;(2)经过O、C、B三点的抛物线上是否存在P点(与原点O不重合),使得P点到两坐标轴的距离相等.如果存在,求出P点坐标;如果不存在,请说明理由.
22(本题10分)为缓解交通压力,节约能源减少大气污染,上海市政府推行“P+R”模式(即:开自驾车人士,将车开到城郊结合部的轨道车站附近停车,转乘轨道交通到市中心).市郊某地正在修建地铁站,拟同步修建地下停车库.(提供可选用的数据:)
(本题10分)2010年9月起,长宁区为推进课程改革,落实“减负增效”,在部分学校六年级实施“阅读领航计划”试点研究.为了解在数学课堂内“阅读”指导对学生学习方法改进的程度,在社会实践阅读活动组织内容的受欢迎程度.在试点学校六年级随机抽取200名学生,对“学习方法改进”情况与“社会实践阅读活动组织内容”受欢迎程度两项作了调查.根据统计数据分别绘制成了下面扇形统计图与条形统计图.(1)对“学生学习方法改进”程度的调查反馈中回答“显著改进”的学生有多少名?(2)请将“社会实践阅读活动组织内容”受欢迎程度条形统计图补完整;(3)若参加“社会实践阅读”试点学校的六年级学生约有1600名,根据上述统计数据,请你估计试点学校对“社会实践阅读活动组织内容”表示非常喜欢、喜欢及比较喜欢的学生共有多少名?