如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.
如图,已知 P 为锐角 ∠ MAN 内部一点,过点 P 作 PB ⊥ AM 于点 B , PC ⊥ AN 于点 C ,以 PB 为直径作 ⊙ O ,交直线 CP 于点 D ,连接 AP , BD , AP 交 ⊙ O 于点 E .
(1)求证: ∠ BPD = ∠ BAC .
(2)连接 EB , ED ,当 tan ∠ MAN = 2 , AB = 2 5 时,在点 P 的整个运动过程中.
①若 ∠ BDE = 45 ° ,求 PD 的长.
②若 ΔBED 为等腰三角形,求所有满足条件的 BD 的长.
(3)连接 OC , EC , OC 交 AP 于点 F ,当 tan ∠ MAN = 1 , OC / / BE 时,记 ΔOFP 的面积为 S 1 , ΔCFE 的面积为 S 2 ,请写出 S 1 S 2 的值.
温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排 x 人生产乙产品.
(1)根据信息填表:
产品种类
每天工人数(人 )
每天产量(件 )
每件产品可获利润(元 )
甲
15
乙
x
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.
(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润 W (元 ) 的最大值及相应的 x 值.
如图, D 是 ΔABC 的 BC 边上一点,连接 AD ,作 ΔABD 的外接圆,将 ΔADC 沿直线 AD 折叠,点 C 的对应点 E 落在 ⊙ O 上.
(1)求证: AE = AB .
(2)若 ∠ CAB = 90 ° , cos ∠ ADB = 1 3 , BE = 2 ,求 BC 的长.
如图,抛物线 y = a x 2 + bx ( a ≠ 0 ) 交 x 轴正半轴于点 A ,直线 y = 2 x 经过抛物线的顶点 M .已知该抛物线的对称轴为直线 x = 2 ,交 x 轴于点 B .
(1)求 a , b 的值.
(2) P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 OP , BP .设点 P 的横坐标为 m , ΔOBP 的面积为 S ,记 K = S m .求 K 关于 m 的函数表达式及 K 的范围.
现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:
(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.
(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的 20 % ,求甲公司需要增设的蛋糕店数量.