(本小题满分6分)在一只不透明的布袋中装有红球、黄球各若干个,这些球除颜色外都相同,充分摇匀.(1)已知这只布袋中有3个红球,1个黄球.从袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程).(2)若这只布袋中有3个红球,x个黄球.请写出一个x的值 ,使得事件“从袋中一次摸出4个球,都是黄球”是不可能事件.
(·黑龙江绥化)如图 ,已知抛物线y=ax2+bx+c与x轴交于点A、B ,与直线AC:y=-x-6交y轴于点C、D,点D是抛物线的顶点 ,且横坐标为-2.(1)求出抛物线的解析式。(2)判断△ACD的形状,并说明理由。(3)直线AD交y轴于点F ,在线段AD上是否存在一点P ,使∠ADC=∠PCF .若存在 ,直接写出点P的坐标;若不存在,说明理由。
(·辽宁营口)如图1,一条抛物线与轴交于A,B两点(点A在点B的左侧),与轴交于点C,且当x=-1和x=3时,的值相等.直线与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时动点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为秒.①若使△BPQ为直角三角形,请求出所有符合条件的值;②求为何值时,四边形ACQ P的面积有最小值,最小值是多少?(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿轴向左平移个单位长度(),将平移后的三角形与△ODM重叠部分的面积记为,求与的函数关系式.
(·黑龙江省黑河市、齐齐哈尔市、大兴安岭)【10分】如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
(·黑龙江哈尔滨)(本题10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+1(k≠0)与x轴交于点A,与y轴交于点C,过点C的抛物线y=ax2-(6a-2)x+b (a≠0)与直线AC交于另一点B,点B坐标为(4,3).(1)求a的值;(2)点p是射线CB上的一个动点,过点P在作PQ⊥x轴,垂足为点Q,在x轴上点Q的右侧取点M,使MQ=,在QP的延长线上取点N,连接PM,AN,已知tan∠NAQ-tan∠MPQ=,求线段PN的长;(3)在(2)的条件下,过点C作CD⊥AB,使点D在直线AB 下方,且CD=AC,连接PD,NC,当以PN,PD,NC的长为三边长构成的三角形面积是时,在y轴左侧的抛物线上是否存在点E,连接NE,PE,使得ΔENP与以PN、PD、NC的长为三边长的三角形全等?若存在,求出点E坐标;若不存在,请说明理由.
(·辽宁葫芦岛)如图,直线与x轴交于点C,与y轴交于点B,抛物线经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.