已知函数,(1)求证: ;(2)设,求证:存在唯一的使得g(x)图象在点A()处的切线与y=f(x)图象也相切;(3)求证:对任意给定的正数a,总存在正数x,使得成立.
(本小题满分12分) 某市举行一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
(1)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少? (2)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.
(本小题满分12分) 设锐角三角形的内角的对边分别为,且. (Ⅰ)求的大小; (Ⅱ)求的取值范围.
(本小题满分10分)选修4—5:不等式选讲 已知函数, (Ⅰ)当时,解不等式; (Ⅱ)若存在,使得成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数)与曲线的极坐标方程为 (Ⅰ)求直线l与曲线C的普通方程; (Ⅱ)设直线l与曲线C相交于A,B两点,证明:0.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. (本小题满分10分)选修4—1:几何证明选讲 如图,AB是⊙O的直径,弦BD、CA的延长线相交于 点E,EF垂直BA的延长线于点F. 求证: (Ⅰ); (Ⅱ)