(本小题满分16分)如图,为椭圆: (a>b>)的左、右焦点,是椭圆的两个顶点,椭圆的离心率,△的面积为.若在椭圆上,则点称为点的一个“椭点”.直线与椭圆交于两点,两点的“椭点”分别为,已知以为直径的圆经过坐标原点.(1)求椭圆的标准方程;(2)△的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
设. (1)若在上的最大值是,求的值; (2)若对于任意,总存在,使得成立,求的取值范围;
已知函数是定义在上的奇函数,且, (1)确定函数的解析式; (2)用定义证明在(-1,1)上是增函数; (3)解不等式
已知函数. (1)求函数的单调区间,并指出其增减性; (2)若关于x的方程至少有三个不相等的实数根,求实数a的取值范围.
12分)已知,不等式的解集是, (Ⅰ) 求的解析式; (Ⅱ) 若对于任意,不等式恒成立,求t的取值范围.
已知集合A={x|,,且,求实数a的取值范围。