(本小题满分为14分) 如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.(1)请在木块的上表面作出过的锯线,并说明理由;(2)若该四棱柱的底面为菱形,四边形是矩形时,试证明:平面平面.
已知函数,数列的项满足: ,(1)试求(2) 猜想数列的通项,并利用数学归纳法证明.
已知函数(1) 若函数在上单调,求的值;(2)若函数在区间上的最大值是,求的取值范围.
设是虚数,是实数,且(1) 求的实部的取值范围(2)设,那么是否是纯虚数?并说明理由。
已知数列满足(I)求数列的通项公式;(II)若数列中,前项和为,且证明:
,,为常数,离心率为的双曲线:上的动点到两焦点的距离之和的最小值为,抛物线:的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线:(为负常数)上任意一点向抛物线引两条切线,切点分别为、,坐标原点恒在以为直径的圆内,求实数的取值范围。