(本小题满分14分)如图,已知椭圆C:的离心率,短轴的右端点为B, M(1,0)为线段OB的中点.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M任意作一条直线与椭圆C相交于两点P,Q试问在x轴上是否存在定点N,使得∠PNM =∠QNM ?若存在,求出点N的坐标;若不存在,说明理由.
已知向量,,函数. (1)求函数的单调递增区间 (2)在中,分别是角、、的对边,且,求面积的最大值
(本小题满分14分) 已知函数在(0,1)内是增函数. (1)求实数的取值范围; (2)若,求证:.
(本小题满分13分) 数列的首项,前项和为,满足关系(,,3,4…) (1)求证:数列为等比数列; (2)设数列的公比为,作数列,使,.(,3,4…)求 (3)求…的值
(本小题满分12分)() (1)求的定义域; (2)问是否存在实数、,当时,的值域为,且若存在,求出、的值,若不存在,说明理由.
(本小题满分12分) 在中,,,是角,,的对边,且 (1)求角的大小; (2)若,求面积最大值.