(本小题满分14分)已知焦点在轴上的椭圆的离心率为,分别为左右焦点,过点作直线交椭圆于(在两点之间)两点,且,关于原点的对称点为.(1)求椭圆的方程;(2)求直线的方程;(3)过任作一直线交过三点的圆于两点,求面积的取值范围.
(本小题10分)化简
(本题12分)已知函数1n,且>0(Ⅰ)若函数上是增函数,求的取值范围;(Ⅱ)求函数的最大值和最小值。
(本题10分)甲、乙、丙三名射击运动员射中目标的概率分别为(0<a<1),三各射击一次,击中目标的次数记为。(Ⅰ)求的分布列;(Ⅱ)若的值最大,求实数a的取值范围。
(本题8分)某果园要用三辆汽车将一批水果从所在城市E运至销售城市F,已知从城市E到城市F有两条公路。统计表明:汽车走公路Ⅰ堵车的概率为,走公路Ⅱ堵车的概率为,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响。(Ⅰ)求甲、乙两辆汽车中恰有一辆堵车的概率。(Ⅱ)求三辆汽车中至少有两辆堵车的概率。
(本题8分)甲、乙、丙三人独立完成某项任务的概率分别为。且他们是否完成任务互不影响。(Ⅰ)若,设甲、乙、丙三人中能完成任务人数为X,求X的分布列和数学期望EX;(Ⅱ)若三人中只有丙完成了任务的概率为,求的值