已知正项数列的前项和为,且 .(1)求的值及数列的通项公式; (2)求证:;(3)是否存在非零整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由.
选修4-1:几何证明选讲如图,已知,过顶点的圆与边切于的中点,与边分别交于点,且,点平分.求证:.
四、选做题(本小题满分10分。请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)22.选修4—4:坐标系与参数方程求直线()被曲线所截的弦长.
(本小题满分12分)已知函数(Ⅰ)若函数是定义域上的单调增函数,求实数的最小值;(Ⅱ)方程有两个不同的实数解,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,有成立?若存在,请求出的值;若不存在,请说明理由.
本小题满分12分)如图,在四棱柱中,底面为直角梯形,,,平面,与平面成角.(Ⅰ)若,为垂足,求证:(Ⅱ)求平面与平面所成锐二面角的余弦值.
(本小题满分12分)如图8—3,已知ΔOFQ的面积为S,且.(1)若,求向量与的夹角θ的取值范围;(2)设,,若以O为中心,F为焦点的椭圆经过点Q,当取得最小值时,求此椭圆方程.