设函数.(Ⅰ)证明:当时,;(Ⅱ)设当时,,求实数的取值范围.
如图,已知四棱锥平面,底面为直角梯形,,且,.(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;(2)当面,且,求四棱锥的体积.
已知数列各项均为正数,满足.(1)计算,并求数列的通项公式;(2)求数列的前项和.
某种产品按质量标准分为,,,,五个等级.现从一批该产品随机抽取20个,对其等级进行统计分析,得到频率分布表如下:
(1)在抽取的20个产品中,等级为5的恰有2个,求,;(2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.
已知函数的最大值为2.(1)求的值及的最小正周期;(2)在坐标纸上做出在上的图像.
设,(1)若的图像关于对称,且,求的解析式;(2)对于(1)中的,讨论与的图像的交点个数.