在上海世博会期间,小红计划对事先选定的个场馆进行参观.在她选定的个场馆中,有个场馆分布在区,个场馆分布在区,个场馆分布在区.已知区的每个场馆的排队时间为小时,区和区的每个场馆的排队时间为小时.参观前小红因事只能从这个场馆中随机选定个场馆进行参观.(Ⅰ)求小红每个区都参观个场馆的概率;(Ⅱ)设小红排队时间总和为(小时),求随机变量的分布列和数学期望.
已知函数(a∈R). (1)若在[1,e]上是增函数,求a的取值范围; (2)若a=1,1≤x≤e,证明:<.
已知函数f(x)=2x3+ax2+bx+3在x=-1和x=2处取得极值.
设是二次函数,方程有两个相等的实根,且。 求的表达式; 求的图像与直线x+y-1=0所围成的图形的面积。
(满分14分)甲、乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各抛一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上12,这样就可得到一个新的实数. 对仍按上述方法进行一次操作,又得到一个新的实数. 当时, 甲获胜, 否则乙获胜. 若甲获胜的概率为, 求的取值范围。
(满分14分)已知椭圆的右焦点与抛物线的焦点重合,椭圆与抛物线在第一象限的交点为,,求椭圆的方程。