(本小题12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知, ,且∥(1)求角B的大小(2)若b=1,求△ABC面积的最大值
已知等差数列的首项为,公差为,且不等式的解集为.(I)求数列的通项公式;(II)若,求数列前项和.
已知函数.(I)当时,求的最大值和最小值;(II)设的内角所对的边分别为,且,若向量与向量共线,求的值.
已知数列,满足(I)求证:数列均为等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)求证:.
以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,)。(I)求椭圆C的方程;(II)过P点分别以为斜率的直线分别交椭圆C于A,B,M,N,求证: 使得
如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=。(I)若M为PA中点,求证:AC∥平面MDE;(II)求直线PA与平面PBC所成角的正弦值;(III)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?