(本小题12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知, ,且∥(1)求角B的大小(2)若b=1,求△ABC面积的最大值
已知函数=。(1)当时,求函数的单调增区间;(2)求函数在区间上的最小值;(3)在(1)的条件下,设=+,求证: (),参考数据:。
已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线 的焦点。(1)求椭圆C的方程;(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B运动时,满足=,试问直线AB的斜率是否为定值,请说明理由。
如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆。(1)若最大拱高h为6 m,则隧道设计的拱宽是多少?(2)若要使隧道上方半椭圆部分的土方工程 量最小,则应如何设计拱高h和拱宽?(已知:椭圆+=1的面积公式为S=,柱体体积为底面积乘以高。)(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的倍,试确定M、N的位置以及的值,使总造价最少。
(本小题13分)己知函数。(1)试探究函数的零点个数;(2)若的图象与轴交于两点,中点为,设函数的导函数为, 求证:。
大学生自主创业已成为当代潮流。长江学院大三学生夏某今年一月初向银行贷款20000元作开店资金,全部用作批发某种商品,银行贷款的年利率为6%,约定一年后一次还清贷款。已知夏某每月月底获得的利润是该月月初投人资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出。(1)设夏某第个月月底余元,第个月月底余元,写出的值并建立与的递推关系式;(2)预计年底夏某还清银行贷款后的纯收入。(参考数据:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10﹣11,0.1212≈8.92×10﹣12)