以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,)。(I)求椭圆C的方程;(II)过P点分别以为斜率的直线分别交椭圆C于A,B,M,N,求证: 使得
已知数列的前项和为,向量,,满足条件,且.(1)求数列的通项公式;(2)设函数,数列满足条件,①求数列的通项公式;②设,求数列的前和.
(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.
【改编】已知函数,R,是函数的一个零点.(1)求的值,并求函数的对称轴及单调递增区间;(2)若,且,,求的值.
(本小题满分14分)已知函数,, 其中,是自然对数的底数.函数,.(Ⅰ)求的最小值;(Ⅱ)将的全部零点按照从小到大的顺序排成数列,求证:(1),其中;(2).
(本小题满分13分)如图,设为抛物线的焦点,是抛物线上一定点,其 坐为 ,为线段的垂直平分线上一点,且点到抛物线的准线的距离为. (Ⅰ)求抛物线的方程; (Ⅱ)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值,求证:直线PA、PB的倾斜角互补.