(1)(本小题6分)在平面直角坐标系中,已知某点,直线.求证:点P到直线的距离(2)(本小题7分)已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线与抛物线C相交于A,B两点,若向量在向量上的投影为n,且,求直线的方程.
设,讨论函数的单调性.
如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的, A , A ` , B , B ` 分别为 C D ^ , C ` D ` ^ , D E ^ , D ` E ` ^ 的中点, O 1 , O 1 ` , O 2 , O 2 ` 分别为 C D , C ` D ` , D E , D ` E ` 的中点. (1)证明: O 1 ` , A ` , O 2 , B 四点共面; (2)设 G 为 A A ` 中点,延长 A ` O 1 ` 到 H ` ,使得 O 1 ` H ` ⊥ A ` O 1 ` .证明: B O 2 ` ⊥ 平面 H ` B ` G .
在某次测验中,有6位同学的平均成绩为75分.用表示编号为(=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差; (2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
已知函数. (1)求的值; (2)设.求的值.
已知为常数,且,函数,(=2.71828…是自然对数的底数). (I)求实数的值; (II)求函数的单调区间; (III)当=1时,是否同时存在实数和(),使得对每一个,直线与曲线都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.