如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.(Ⅰ)若,求证:平面PQB平面PAD;(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
已知直线l平行于直线,直线l与两坐标轴围成的三角形的周长是15,求直线l的方程.
如图,四棱锥S- ABCD中,底面ABCD为平行四边形,E是SA上一点,试探求点E的位置,使SC//平面EBD,并证明. 答:点E的位置是 .证明:
已知函数f(x)=lg(ax-kbx )(k是正实数,a>1>b>0)的定义域为(0,+∞),问是否存在实数a,b,当x∈(1,+∞)时,f(x)的值取到一切正实数,且f(3)=lg4;如果存在,求出a,b的值;如果不存在,请说明理由。
已知{an}是等比数列,a1=2,a3=18,{bn}是等差数列b1=2,b1+b2+b3+b4=a1+a2+a3>20(1)求数列{bn}的通项公式;(2)求数列{bn}的前n项和Sn;(3)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n="1," 2……,试比较Pn与Qn的大小并证明你的结论。
已知y=,试求它的反函数以及反函数的定义域和值域。