已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).(Ⅰ)求椭圆的方程;(Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
已知,分别是关于的方程的两个根,且,求实数的取值范围.
某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案;在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过万元,同时奖金不超过利润的.现有三个奖励模型:,,.其中哪个模型能符合公司的要求?
借助计算器或计算机,用二分法求方程在区间内的近似解(精确到).
设在海拔m处的大气压强是Pa,与之间的函数关系式是,其中,为常量.测得某地某天海平面的大气压强为Pa,1000m高空的大气压为Pa,求600m高空的大气压强(保留个有效数字).
某商店经销某种洗衣粉,年销售总量为6000包,每包进价2.8元,销售价3.4元.全年分若干次进货,每次进货均为包.已知每次进货运输劳务费为62.5元,全年保管费为元.求:(1) 把该商店经销洗衣粉一年的利润元表示为每次进货量包的函数,并指出这个函数的定义域.(2) 为了使利润最大,每次应该进货多少包?