某校男女篮球队各有10名队员,现将这20名队员的身高绘制成如下茎叶图(单位:cm).男队员身高在180cm以上定义为“高个子”,女队员身高在170cm以上定义为“高个子”,其他队员定义为“非高个子”.用分层抽样的方法,从“高个子”和“非高个子”中共抽取5名队员.(Ⅰ)从这5名队员中随机选出2名队员,求这2名队员中有“高个子”的概率;(Ⅱ)求这5名队员中,恰好男女“高个子”各1名队员的概率.
已知函数.(1)若是函数,y=F(x)的极值点,求实数a的值;(2)若函数y=F(x)(x∈(0,3])的图象上任意一点处切线的斜率恒成立,求实数a的取值范围;(3)若函数y=f(x)在[1,2]上有两个零点,求实数a的取值范围.
如图所示的长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,,M是线段B1D1的中点.(1)求证:BM∥平面D1AC;(2)求证:D1O⊥平面AB1C;(3)求二面角B﹣AB1﹣C的大小.
某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响.已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.(1)求乙、丙两人各自回答这道题正确的概率;(2)用ξ表示回答该题正确的人数,求ξ的分布列和数学期望Eξ.
已知数列{an}满足,n∈N*.(1)求数列{an}的通项公式;(2)设bn=(2n﹣1)an,求数列{bn}的前n项和Sn.
在△ABC中,已知角A、B、C的对边分别为a、b、c.向量=(cosB,cosC),=(b,2a﹣c)且向量与共线.(1)求cosB的值;(2)若b=,求△ABC的面积的最大值.