【2015高考山东,文21】平面直角坐标系中,已知椭圆:的离心率为,且点(,)在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.(ⅰ)求的值;(ⅱ)求面积的最大值.
已知数列,满足,,若。 (1)求; (2)求证:是等比数列; (3)若数列的前项和为,求
在中,内角所对边长分别为,,. (1)求的最大值;(2)求函数的值域.
设函数. (1)在区间上画出函数的图象 ; (2)设集合. 试判断集合和之间的关系,并给出证明.
下列说法:(1)命题“”的否定是“”; (2)关于的不等式恒成立,则的取值范围是; (3)对于函数,则有当时,,使得函数在上有三个零点; (4) (5)已知,且是常数,又的最小值是,则7.其中正确的个数是.
已知函数. (1)解不等式; (2)若,且,求证:.