【2015高考福建,文19】已知点为抛物线的焦点,点在抛物线上,且.(Ⅰ)求抛物线的方程;(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
(13分)如图,四棱锥的底面是正方形,,点在棱上. (Ⅰ)求证:平面; (Ⅱ)当且为的中点时,求四面体体积.
(13分) 如图,直三棱柱中,,,. (Ⅰ)证明:; (Ⅱ)求二面角的正切值.
(13分)如图,在边长为2的菱形中,,是和的中点.(Ⅰ)求证:平面; (Ⅱ)若,求与平面所成角的正弦值.
(13分)如图,正方体中. (Ⅰ)求与所成角的大小; (Ⅱ)求二面角的正切值.
某厂生产某种零件,每个零件的成本为40元,出厂单价60元,该厂为鼓励销售商订购。决定当一次订购超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂价不低于51元. (1)当一次订购量为多少时,零件的实际出厂单价降为51元? (2)当一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式. (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少?