【2015高考陕西,文20】如图,椭圆经过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)经过点,且斜率为的直线与椭圆交于不同两点(均异于点),证明:直线与的斜率之和为2.
三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。 (1)证明:平面PAB⊥平面PBC; (2)若,,PB与底面ABC成60°角,分别是与的中点,是线段上任意一动点(可与端点重合),求多面体的体积。
集合,,若命题,命题,且是必要不充分条件,求实数的取值范围。
已知函数.(I)当时,求的单调区间(Ⅱ)若不等式有解,求实数m的取值菹围;(Ⅲ)定义:对于函数和在其公共定义域内的任意实数,称的值为两函数在处的差值。证明:当时,函数和在其公共定义域内的所有差值都大干2。
已知数列中,且点在直线上。(1)求数列的通项公式;(2)若函数求函数的最小值;(3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。
如图,海上有两个小岛相距10,船O将保持观望A岛和B岛所成的视角为,现从船O上派下一只小艇沿方向驶至处进行作业,且.设。(1)用分别表示和,并求出的取值范围;(2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线的距离为,求BD的最大值.