(本小题满分12分)如图:在底面为直角梯形的四棱锥P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.(1)求证:BD⊥平面PAC(2)求二面角B-PC-A的大小.
已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆过原点.若存在,求出直线l的方程;若不存在,说明理由
设圆满足(1)y轴截圆所得弦长为2.(2)被x轴分成两段弧,其弧长之比为3∶1,在满足(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
有定点及定直线,是上在第一象限内的点,交轴的正半轴于点,问点在什么位置时,的面积最小,并求出最小值.
若直线沿轴向左平移3个单位,再沿轴向上平移1个单位后,回到原来的位置,试求直线的斜率.
已知中,顶点,,的平分线的方程是.求顶点的坐标.