(本小题满分13分)设,函数,函数,. (Ⅰ)当时,写出函数零点个数,并说明理由;(Ⅱ)若曲线与曲线分别位于直线的两侧,求的所有可能取值.
在中,角,,的对边是,,,且. (Ⅰ)求的值; (Ⅱ)若,求面积的最大值.
已知函数. (1)求证:; (2)解不等式
平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为. (1)求直线的极坐标方程; (2)若直线与曲线相交于、两点,求.
已知函数在点处的切线方程为. (1)求函数的解析式; (2)若经过点可以作出曲线的三条切线,求实数的取值范围.
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上. (Ⅰ)求椭圆C的方程; (Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切的圆方程.