(本小题满分13分)已知为椭圆的左,右焦点,点在椭圆上,且(Ⅰ)求椭圆的方程;(Ⅱ)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值,若不存在,请说明理由.
某商店销售洗衣粉,年销售总量为6000包,每包进价2.8元,销售价3.4元.全年分若干次进货,每次进货均为包.已知每次进货运输劳务费为62.5元,全年保管费为1.5元.(1)把该店经销洗衣粉一年的利润(元)表示为每次进货量(包)的函数,并指出函数的定义域;(2)为了使利润最大化,问每次该进货多少包?
设是定义在上函数,且对任意,当时,都有成立.解不等式.
解方程.
已知, 试用表示.
已知函数的定义域为R,对任意,均有,且对任意都有.(1)试证明:函数在R上是单调函数;(2)判断的奇偶性,并证明;(3)解不等式;(4)试求函数在上的值域.