(本小题满分12分)设关于的方程(Ⅰ)若方程有实数解,求实数的取值范围;(Ⅱ)当方程有实数解时,讨论方程实根的个数,并求出方程的解.
如图所示为一个几何体的直观图、三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形). (1)求四棱锥P-ABCD的体积; (2)若G为BC上的动点,求证:AE⊥PG.
已知数列{an}的前n项和为Sn,且满足Sn=n2,数列{bn}满足bn=,Tn为数列{bn}的前n项和. (1)求数列{an}的通项公式an和Tn; (2)若对任意的n∈N*,不等式λTn<n+(-1)n恒成立,求实数λ的取值范围.
已知函数f(x)=的图象过原点,且关于点(-1,2)成中心对称. (1)求函数f(x)的解析式; (2)若数列{an}满足a1=2,an+1=f(an),试证明数列为等比数列,并求出数列{an}的通项公式.
已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+… +2n-1bn=nan,设数列{bn}的前n项和为Sn. (1)求数列{an},{bn}的通项公式; (2)求满足13<Sn<14的n的集合.
已知数列{an}的前n项和是Sn,且Sn+an=1. (1)求数列{an}的通项公式; (2)记bn=log3,数列的前n项和为Tn,证明:Tn<.