如图,已知椭圆:,其左右焦点为及,过点的直线交椭圆于两点,线段的中点为,的中垂线与轴和轴分别交于两点,且、、构成等差数列.(1)求椭圆的方程;(2)记△的面积为,△(为原点)的面积为.试问:是否存在直线,使得?说明理由.
如图所示,在四棱锥中,底面四边形是菱形,,是边长为2的等边三角形,,. (Ⅰ)求证:底面; (Ⅱ)求直线与平面所成角的大小; (Ⅲ)在线段上是否存在一点,使得∥平面?如果存在,求的值,如果不存在,请说明理由.
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示. 假设每名队员每次射击相互独立. (Ⅰ)求上图中的值; (Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数的分布列及数学期望(频率当作概率使用); (Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)
函数. (Ⅰ)在中,,求的值; (Ⅱ)求函数的最小正周期及其图象的所有对称轴的方程.
已知函数的自变量的取值区间为A,若其值域区间也为A,则称A为的保值区间. (Ⅰ)求函数形如的保值区间; (Ⅱ)函数是否存在形如的保值区间?若存在,求出实数的值,若不存在,请说明理由.
已知函数. (Ⅰ)当时,求值; (Ⅱ)若存在区间(且),使得在上至少含有6个零 点,在满足上述条件的中,求的最小值.