(本小题满分14分)已知椭圆(,)的离心率,并且经过定点.(1)求椭圆的方程;(2)问是否存在直线,使直线与椭圆交于,两点,满足?若存在,求的值;若不存在,说明理由.
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为. (Ⅰ)求椭圆E的方程; (Ⅱ)直线x+y+1=0与椭圆E相交于A、B(B在A上方)两点,问是否存在直线l,使l与椭圆相交于C、D(C在D上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,AB=2,点D1、D分别是棱B1C1、BC的中点. (Ⅰ)求证:A1D1⊥平面BB1C1C; (Ⅱ)求证:AB1∥平面CA1D1; (Ⅲ)求多面体A1B1D1-CAD的体积.
甲、乙两名运动员在一次射击预选赛中,分别射击了4次,成绩如下表(单位:环):
(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率; (Ⅱ)现要从中选派一人参加正式比赛,你认为选派哪位运动员参加比较合适?请说明理由.
在等差数列{an}中,Sn为其前n项和,且a5=9,S3=9. (Ⅰ)求数列{an}的通项an; (Ⅱ)若数列{}的前n项和为Tn,求2Tn≥的最小正整数n的值.
已知的顶点,边上的中线所在的直线方程为,边上的高所在直线的方程为。 (1)求的顶点、的坐标; (2)若圆经过不同的三点、、,且斜率为的直线与圆相切于点,求圆的方程; (3)问圆是否存在斜率为的直线,使被圆截得的弦为,以为直径的圆经过原点.若存在,写出直线的方程;若不存在,说明理由。