【改编】(本小题满分13分)已知椭圆的离心率为,右焦点到直线的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆右焦点斜率为的直线与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线于点M,N,线段MN的中点为P,记直线的斜率为,求证:为定值.
已知函数(m为常数,且m>0)有极大值9. (Ⅰ)求m的值; (Ⅱ)若斜率为-5的直线是曲线的切线,求此直线方程.
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程
求函数f(x)=-2的极值。
已知椭圆C的焦点F1(-,0)和F2(,0),长轴长6,设直线交椭圆C于AB两点,求线段AB的中点坐标
已知函数=(e为自然对数的底数) (Ⅰ)求函数单调递增区间; (Ⅱ)若,求函数在区间[0,]上的最大值和最小值. (III)若函数的图象有三个不同的交点,求实数k的取值范围. (参考数据)