如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。(1)求椭圆的离心率;(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程。
右面的图形无限向内延续,最外面的正方形的边长等1。从外到内,第i个正方形与内切圆之间的深灰色图形面积记为Si(i="1," 2, …)。分别求S1,S2,Sk;求深灰色图形的面积的总和。
如图,四边形ABCD为矩形,DA⊥平面ABE, AE=EB=BC=2,EB⊥平面ACE于点F,且点F在CE上。 (1)求证:AE⊥BE;(2)求三棱锥D—AEC的体积; (3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN//平面DAE。
已知圆(1)求过点的圆C的切线方程; (2)求在两坐标轴上截距之和为0,且截圆C所得弦长为2的直线方程。
已知集合(1)若,求实数m的值;(2)若,求实数m的取值范围.