(本小题满分13分)如图,已知椭圆的离心率为,其左、右顶点分别为.一条不经过原点的直线与该椭圆相交于、两点.(Ⅰ)求椭圆的方程;(Ⅱ)若,直线与的斜率分别为.试问:是否存在实数,使得?若存在,求的值;若不存在,请说明理由.
如图,一面旗帜由部分构成,这部分必须分别着上不同的颜色,现有红、黄、蓝、黑四种颜色可供选择,利用树状图列出所有可能结果,并计算下列事件的概率:(1)红色不被选中;(2)第部分是黑色并且第部分是红色.
对一批衬衣进行抽检,结果如下表:(1)完成上面统计表;(2)事件为任取一件衬衣为次品,求;(3)为了保证买到次品的顾客能够及时更换,销售件衬衣,至少需要进货多少件衬衣?
给定整数,证明:存在n个互不相同的正整数组成的集合S,使得对S的任意两个不同的非空子集A,B,数 与 是互素的合数.(这里与分别表示有限数集的所有元素之和及元素个数.)
凸边形中的每条边和每条对角线都被染为n种颜色中的一种颜色.问:对怎样的n,存在一种染色方式,使得对于这n种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形的顶点,且它的3条边分别被染为这3种颜色?
给定整数,实数满足.求的最小值.