(本小题满分12分)已知等差数列单调递增,且, 是与的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,求数列的前项和.
等差数列中,,公差,且它的第2项,第5项,第14项分别是等比数列的第2项,第3项,第4项. (Ⅰ)求数列与的通项公式; (Ⅱ)设数列对任意自然数均有成立,求的值.
已知函数. (Ⅰ)若,求函数的极值,并指出是极大值还是极小值; (Ⅱ)若,求证:在区间上,函数的图像在函数的图像的下方.
设三角形ABC的内角所对的边长分别为,,且. (Ⅰ)求角的大小; (Ⅱ)若AC=BC,且边上的中线的长为,求的面积.
已知函数的图像在点处的切线方程为. (I)求实数,的值; (Ⅱ)当时,恒成立,求实数的取值范围.
已知函数(其中为常数). (I)当时,求函数的最值; (Ⅱ)讨论函数的单调性.