如图,平面直角坐标系xOy中,一次函数y=-x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.
已知:如图,在梯形ABCD中,AB∥CD,AD=BC,AB=10,CD=18,∠ADC=60°,过BC上一点E作直线EH,交CD于点F,交AD的延长线于点H,且EF=FH. (1)求梯形ABCD的面积; (2)求证:AD=DH+BE.
端午节吃粽子是中华民族的传统习俗,王老师准备为班上的同学每人买一个粽子,于是他对全班同学喜欢吃的粽子种类进行了统计,并制成了如下两幅不完整的统计图: (1)求扇形统计图中“火腿粽”部分所对应的圆心角度数,并补全条形统计图; (2)王老师按统计的数据给每人都只买了一个粽子.端午节那天,小明和小红等几位同学最后领粽子,此时,王老师已经分发了3个红枣粽,9个豆沙粽,16个腊肉粽, 2个火腿粽和6个其它的粽子,剩余的粽子全部放在一个盒子里.小明喜欢吃的是火腿粽,小红喜欢吃的是红枣粽,王老师不看盒子,一次性从盒子里拿出两个粽子,请你用列表法或画树状图的方法求出这两个粽子恰好同时是小明和小红喜欢吃的粽子的概率.(注:列表或画图时,可用各类粽子名称的第一个字简记)
如图,经过点A(-2,0)的一次函数 y=ax+b(a≠0) 与反比例函数 y=(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=,点B的坐标为(4,0). (1) 求反比例函数和一次函数的解析式; (2)设一次函数与y轴相交于点C,求四边形OBPC的面积.
先化简,再求值:,其中满足.
在缙云广场上,有一种多边形地砖的内角和为540°,请你求出这种多边形地砖 的边数.