(本小题满分10分) 已知(),是关于的次多项式;(1)若恒成立,求和的值;并写出一个满足条件的的表达式,无需证明.(2)求证:对于任意给定的正整数,都存在与无关的常数,,,…,,使得.
已知等差数列 { a n } 中, a 3 a 7 = - 16 , a 4 + a 5 = 0 求 { a n } 前 n 项和 S n .
设 △ A B C 的内角 A , B , C 的对边长分别为 a , b , c , cos ( A - C ) + cos B = 3 2 , b 2 = a c ,求 B .
设函数的图象的一条对称轴是直线 (1)求; (2)求函数的递减区间; (3)试说明的图象可由的图象作怎样变换得到.
在锐角三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,且 ⑴若,求A、B、C的大小; ⑵)已知向量的取值范围.
已知角的顶点在原点,始边与轴的正半轴重合,终边经过点. (1)求式子的值; (2)若函数()的图像关于直线对称,求的值.