(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)设=λ(0≤A≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.
设同时满足条件:① ;② (,是与无关的常数)的无穷数列叫“嘉文”数列.已知数列的前项和满足: (为常数,且,). (Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值,并证明此时为“嘉文”数列.
已知函数定义在区间上,,且当时,恒有.又数列满足.(1)证明:在上是奇函数;(2)求的表达式;(3)设为数列的前项和,若对恒成立,求的最小值.
已知集合,集合(1)求集合;(2)若,求的取值范围.
本公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本题满分14分)设函数⑴当且函数在其定义域上为增函数时,求的取值范围;⑵若函数在处取得极值,试用表示;⑶在⑵的条件下,讨论函数的单调性。