猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为 .(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.
(本题7分)为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)这个游戏是否公平?请说明理由.
(本题8分)如图,一次函数 y="kx+b" 的图象与反比例函数y=的图象交于 A(﹣2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)连OB,在x轴上取点C,使BC=BO,并求△OBC的面积.
(本题8分)如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上(1)在图中画出△ABC关于点O成中心对称的图形△A′B′C′;(2)在(1)的作图过程中,点A,B,C分别绕点O旋转_________°,求点C在旋转过程中所走过的路径长.
(每小题5分,共10分)(1)计算:2cos45°- (2)解方程:=2x+4
如图,直线AB,CD被直线GH所截,且∠AEG=∠CFG,EM,FN分别平分∠AEG和∠CFG。试说明EM∥FN。