如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.
如图,在□ABCD中,∠ABC的平分线交AD于点E,交CD的延长线于点F, (1)请写出图中的等腰三角形,并证明其中一个三角形是等腰三角形; (2)若E恰好是AD的中点,AB长为4,∠ ABC=60º,求ΔBCF的面积.
(本题7分)一个不透明的袋中装有除颜色外都相同的球,其中红球13个,白球7个、黑球10个.(1)求从袋中摸一个球是白球的概率;(2)现从袋中取出若干个红球,放入相同数量的黑球,使从袋中摸出一个球是黑球的概率不超过40%,问至多取出多少个红球?
(本题8分)如图所示,正方形网格中的每个小正方形边长都是1,每个小格顶点称为格点,请以格点为顶点,在图甲、图乙中画出两个不全等但面积都是16的菱形.
(本题10分)(1)计算:(-2015)0 ×|-3|-32+ ;(2)解方程:-= 2.
二次函数的图象经过点(﹣1,4),且与直线 相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.