某小区想利用一矩形空地建造市民健身广场,设计时决定保留空地边上的一个水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一条直线交于,从而得到五边形的市民健身广场.(Ⅰ)假设,试将五边形的面积表示为的函数,并注明函数的定义域;(Ⅱ)问:应如何设计,可使市民健身广场的面积最大?并求出健身广场的最大面积.
是等比数列的前项和, 公比,已知1是的等 差中项,6是的等比中项, (1)求此数列的通项公式 (2)求数列的前项和
在中,角所对的边分别为,且 (1)求的值 (2)求的面积
如图,正方体棱长为1,是的中点,是的中点. (1)求证:; (2)求二面角的余弦值.
已知在区间上最大值是5,最小值是-11,求的解析式.
已知椭圆的离心率为,轴被抛物线截得的线段长等于的长半轴长. (1)求的方程; (2)设与轴的交点为,过坐标原点的直线 与相交于两点,直线分别与相交于. ①证明:为定值; ②记的面积为,试把表示成的函数,并求的最大值.