某小区想利用一矩形空地建造市民健身广场,设计时决定保留空地边上的一个水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一条直线交于,从而得到五边形的市民健身广场.(Ⅰ)假设,试将五边形的面积表示为的函数,并注明函数的定义域;(Ⅱ)问:应如何设计,可使市民健身广场的面积最大?并求出健身广场的最大面积.
已知:如图所示,在△ABC中,D是BC的中点,F是BA延长线上的点,FD与AC交于点E.求证:AE·FB=EC·FA.
已知、满足,求的最值.
从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A,B为切点.求证:=.
和的极坐标方程分别为.(Ⅰ)把和的极坐标方程化为直角坐标方程;(Ⅱ)求经过,交点的直线的直角坐标方程.
把下列参数方程化为普通方程,并说明它们各表示什么曲线:⑴(为参数); ⑵(为参数)