(本小题满分16分)已知函数(是不同时为零的常数),导函数为.(1)当时,若存在,使得成立,求的取值范围;(2)求证:函数在内至少有一个零点;(3)若函数为奇函数,且在处的切线垂直于直线,关于的方程,在上有且只有一个实数根,求实数的取值范围.
(本小题满分为14分)已知函数,点分别是函数图象上的最高点和最低点. (1)求点的坐标以及的值; (2)设点分别在角的终边上,求的值.
(本小题满分为14分)已知定义域为R的函数是奇函数. (1)求a,b的值; (2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
设定义域为的单调函数,对任意,都有,若是方程的一个解,且,则实数=.
(本小题满分14分)已知函数. (1)当时,求函数的单调区间; (2)若对于任意都有成立,求实数的取值范围; (3)若过点可作函数图象的三条不同切线,求实数的取值范围.
(本小题满分14分)设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点). (1)求椭圆的方程; (2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.