(本小题满分12分)已知椭圆()的离心率,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆相交另一点,若,求直线的倾斜角.
设f(x)=(Ⅰ)讨论f(x)的奇偶性,并说明理由;(Ⅱ)当a=2,求f(x)的极值.
已知数列中,当时,函数取得极值。(1)求数列的通项公式。(2)若点。过函数图象上的点的切线始终与平行(O是坐标原点)。求证:当时,不等式对任意都成立。
已知函数是偶函数,当时.(a为实数).(1)若在处有极值,求a的值。(2)若在上是减函数,求a的取值范围。
已知函数,有极值,曲线处的切线不过第四象限且斜率为3。(1)求,,的值;(2)求在[-4,1]上的最大值和最小值。
已知函数(1)若有极值,求b的取值范围;(2)若在处取得极值时,当恒成立,求c的取值范围;(3)若在处取得极值时,证明:对[-1,2]内的任意两个值都有.