(本小题满分12分)已知椭圆()的离心率,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆相交另一点,若,求直线的倾斜角.
(本小题满分10 分)已知()的展开式中的系数为11. (1)求的系数的最小值; (2)当的系数取得最小值时,求展开式中的奇次幂项的系数之和.
(本小题满分14分)已知数列{an}的前n项和为,且满足,数列满足,为数列的前n项和. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若对任意的,不等式恒成立,求实数的取值范围; (Ⅲ)是否存在正整数m,n(1<m<n),使得,,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.
(本小题满分14分)已知点到直线l:的距离为.数列{an}的首项,且点列均在直线l上. (Ⅰ)求b的值; (Ⅱ)求数列{an}的通项公式; (Ⅲ)求数列的前n项和.
(本小题满分14分)如图所示,某海岛上一观察哨A在上午11时测得一轮船在海岛北偏东的C处,12时20分测得船在海岛北偏西的B处,12时40分轮船到达位于海岛正西方且距海岛5km的E港口,如果轮船始终匀速直线前进,问船速多少?
(本小题14分)等比数列的各项均为正数,且 (Ⅰ)求数列的通项公式; (Ⅱ)设 求数列的前n项和.