已知集合,,满足,,求的值.
设, .(1)当时,求曲线在处的切线方程;(2)如果存在,使得成立,求满足上述条件的最大整数;(3)如果对任意的,都有成立,求实数的取值范围.
已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。(Ⅰ)求椭圆的标准方程;(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同。每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)(1)求在一次游戏中①摸出3个白球的概率;②获奖的概率。(2)求在两次游戏中获奖次数X的分布列及数学期望E(x)。
如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。 (Ⅰ)求证:AE⊥PD;(Ⅱ)若直线PB与平面PAD所成角的正弦值为,求二面角E-AF-C的余弦值.
设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且=+2.(1)求数列{}的通项公式;(2)设数列{}的前n项和为,求证:≤<.