(本小题满分12分)已知数列满足:,且对一切,有,其中为数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)证明:.
已知,;且,求
(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,长轴长为,离心率为,经过其左焦点的直线交椭圆于、两点(I)求椭圆的方程;(II)在轴上是否存在一点,使得恒为常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
(本小题满分12分)。如图,过抛物线(>0)的顶点作两条互相垂直的弦OA、OB。⑴设OA的斜率为k,试用k表示点A、B的坐标;⑵求弦AB中点M的轨迹方程。
(本小题满分12分)已知,设命题函数在R上单调递减,不等式的解集为R,若和中有且只有一个命题为真命题,求的取值范围.
(本小题满分10分)已知数列的前项和为,,(I)求数列的通项公式;(II)设,求的值.